Numerical Calculation of
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The Lyapunov characteristic exponents play a crucial role in the description of the behavior of
dynamical systems. They measure the average rate of divergence or convergence of orbits starting
from nearby initial points. Therefore, they can be used to analyze the stability of limits sets and to
check sensitive dependence on initial conditions, that is, the presence of chaotic attractors. This
article shows how to use Mathematica to compute the Lyapunov spectrum of a smooth dynami-

cal system.

A large number of fields of human knowledge, from physics
to chemistry, from medicine to meteorology, from biology
to economics, makes use of difference and differential equa-
tions (linear or nonlinear, ordinary or partial) to describe
and explain facts observed in the real world (see, for exam-
ple, [Beltrami 1989]). Advances made in the last two decades
in the analysis of nonlinear systems have led to new areas of
application and research for dynamical system theory.
Among these developments is the discovery that deterministic
systems can exhibit a wide range of erratic behaviors (usually
called “chaos”), in many respects indistinguishable from
noise. Several approaches have developed for the study of
such systems, both geometrical [Guckenheimer and Holmes
1983] and statistical [Eckmann and Ruelle 1985]. The statis-
tical approach, which is rooted in ergodic theory, seeks to
characterize dynamical systems through concepts such as
entropy, dimension, and Lyapunov characteristic exponents.
Roughly speaking, dimensions express the number of excited
degrees of freedom of the system and the degree of “geo-
metric complexity” of the attractor, while entropies describes
the production of information in the system. Lyapunov char-
acteristic exponents (LCEs) measure the separation in time of
two orbits starting from arbitrary close initial points. All
these quantities are used to quantify the erratic or chaotic
behavior of a system’s dynamics.

In this article, we develop a package for estimating the
Lyapunov exponents of continuous and discrete differen-
tiable dynamical systems, based on the algorithms presented
in [Benettin et al. 1980] and [Eckmann and Ruelle 1985].

Differentiable Dynamical Systems

In this section, we briefly describe some basic notions of
dynamical system theory that will be useful in the next sec-
tions. For a more detailed treatment, see [Guckenheimer and
Holmes 1983].
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An n-dimensional continuous-time (autonomous) smooth
dynamical system is defined by the differential equation

z=F(z), (1)
where ¢ = dz/dt, z(t) € R" is the state vector at time ¢ and
F:U—R"is a C" function (r 2 1) on an open set U c R"
(that is, F' has derivatives of order r which are continuous at
each point of U). Here, we will not explicitly consider non-
autonomous systems z = F(z, t), because, for our purposes, it
will be sufficient to treat ¢ as an additional dependent vari-
able with the trivial evolution equation ¢ = 1. In other words,
we will rewrite every nonautonomous system as an
autonomous system z = F(z, t), t = 1. (at the expense of
increasing the dimension by one).

The space of dependent variables is often referred to as the
phase space M of the system, which, in our discussion, will
be R™. The function F is a called vector field. If it is linear,
then the system (1) is linear. Moreover, we say that the vector
field F generates the flow f: U xR — R", where fi(z) =
f(z, t) is a C” function defined for all z € U and ¢ € R, such
that

fiz) =F(f'(z))

Given an initial state 2y € U, the solution of (1) is the func-
tion fYzo) : R — R" such that f%(zo) = zo. The set {f'(z) :
t € R} is called the trajectory of the system through .

Any C" map F: U — R" on an open set U c R" defines an
n-dimensional discrete-time (autonomous) smooth dynamical
system by the state equation

forallze U,te R.

T = flz), t € N,

where z, € R" is the state of the system at time ¢ and f maps
; to the next state z,,4. Starting with an initial condition z,
repeated applications (iterates) of f generate a discrete set of
points (the orbit) {f(zo) : t € N}, where f{(z)=f oo f(z).

One of the main goals of dynamical system theory is the
study of steady-state behaviors, that is the quantitative and
qualitative description of the asymptotic evolutions of sys-
tems as t — oo, An important concept for this purpose is the
notion of a limit set.



A point p is an @-limit point of z if there are points f*1(z),
f%(z), ... on the trajectory of z such that f%i(z) — p as t; — oo,
The w-limit set Q(z) is the set of all the w-limit points of z.
Moreover, an w-limit set Q is attracting if there exists an
open neighborhood U of Q(z) such that Q(z) = Q for all
z € U. The basin of attraction Bg of an attracting set Q is the
union of all such neighborhoods U. In other words, Bg is the
set of all initial conditions z that tend toward Q as ¢ — .
(We make no distinction between attracting limit sets and
attractors, even if they are quite different; from a practical
point of view, there is little harm in ignoring the difference.)

Of course, for a scientist, only attracting limit sets are of
interest because non-attracting limit sets cannot be observed
in real systems and simulations. As we will show, LCEs are a
useful tool to investigate the stability of limit sets and to
classify systems on the basis of their asymptotic evolution.

A dynamical system may have only one attracting limit
set, or it may have several, each one with a different basin of
attraction. In this case, the initial condition determines which
limit set will be approached. There are four foundamental
types of limit sets, corresponding to as many types of solu-
tions of differential (or difference) equations.

1. Fixed points. A fixed point is a point z € M such that
fiz) =z for all ¢.

2. Periodic motions. A periodic motion is a solution f* such
that fz) = f**(z) for some fixed constant 7> 0 (the
period) and all ¢. The limit set corresponding to a periodic
solution is the closed curve traced out by fi(z) over one
period, which is topologically equivalent to a circle S'.

3. Quasiperiodic motions. A quasiperiodic solution of a
dynamical system is a function f: R — R" that can be
represented in the form f(¢) = H(wit, ..., w,t), where H is
periodic of period 27 in each argument, and the real num-
bers wy, ..., w, form a finite set of base frequencies (see
[Parker and Chua 1989, 13-18]). A quasiperiodic solu-
tion with ¢ base frequencies is called ¢-periodic. The limit
set of a g-periodic solution is a diffeomorphic copy of a
g-dimensional torus T? = §' x --- x S%, where each S rep-
resents one of the base frequencies.

4. Chaotic motions. Avoiding a formal definition, we say that
chaotic dynamics are characterized by three properties: (a)
they are bounded random-like steady-state trajectories dis-
tinct from the previous kinds of motion; () they converge
to a set in the phase space, called a strange attractor, which
is not a simple manifold like a point, circle, or torus, but
has a complex (fractal) geometrical structure with a frac-
tional Hausdorff dimension [Falconer 1985]; (c) they
exhibit sensitive dependence to initial conditions, that is,
chaotic trajectories locally diverge away from each other
and small changes in starting conditions build up expo-
nentially fast into large changes in evolution.

Lyapunov Exponents

Lyapunov exponents provide a quantitative measure of the
divergence or convergence of nearby trajectories for a
dynamical system. If we consider a small hypersphere of ini-
tial conditions in the phase space, for sufficiently short time
scales, the effect of the dynamics will be to distort this set

into a hyperellipsoid, stretched along some directions and
contracted along others. The asymptotic rate of expansion of
the largest axis, corresponding to the most unstable direction
of the flow, is measured by the largest LCE 4. In general, if
we sort the axes and LCEs in decreasing order by magni-
tude (ey 2 -+ > ¢, and A; > -+ > 1,), each A; quantifies the
average exponential rate of expansion or contraction for the
i-th axis &;.

More formally, consider two nearby points, 2 and z, + u,,
in the phase space M, where u is a small perturbation of the
initial point z; (see Figure 1). After a time ¢, their images
under the flow will be f*(zo) and f*(zq + ug) and the pertur-
bation u; will become

u; = fH(z0 + wo) = f1(z0) = Dy f(20) * uo, (2)

where the last term is obtained by linearizing f*. Therefore
the average exponential rate of divergence or convergence
of the two trajectories is defined by

o b fJue|
H@o,uo) = fim o In o

.1
= lim 10 Day " (@0) - uoll, (3)

where [lull denotes the length of a vector u. If A(z, u) > 0,
then one has exponential divergence of nearby orbits. It can
be shown that, under very weak smoothness conditions on
the dynamical system, the limit (3) exists and is finite for
almost all points zy € M, and, for almost all tangent vectors
ug, it is equal to the largest LCE A, [Oseledec 1968].

Definition (3) refers to LCEs of vectors, also called LCEs
of order 1. A natural and, for our purposes, useful general-
ization is to define LCEs of order p, 1<p <n, which
describe the mean rate of growth of a p-dimensional volume
in the tangent space. Consider a parallelepiped U, in the tan-
gent space whose edges are the p vectors uq, ..., u,. LCEs of
order p are then defined by

A (20, U0) = lim 2 In [Vol? (Ds, £ (U0))] (4)

where Vol? is the p-dimensional volume defined in the tan-
gent space. One of the theorems given in [Oseledec 1968]
shows that one can find p linearly independent vectors
U1y +vvs Up, Such that

)\.p(ﬂfo, UO)=)‘1+“'+)"p' (5)

fH(o + uo)

FIGURE 1. Divergence of two orbits starting from nearby initial points.
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That is, each LCE of order p is equal to the sum of the p
largest LCEs of order 1. For p =n, we obtain the mean expo-
nential rate of growth of the phase space volume. Thus, for a
measure-preserving flow (such as a Hamiltonian system),
> 1 Az, u;) = 0, while for an attractor of a dissipative sys-
tem, contraction must outweigh expansion and the sum must
be negative. Haken [1983] proved that in continuous-time
systems, for any attractor other than a fixed point, one Lya-
punov exponent is always zero.

As previously mentioned, LCEs are convenient for catego-
rizing asymptotic behaviors of dynamical systems. Following
[Klein and Baier 1991], in Table 1 we give a classification of
(autonomous) continuous-time attractors on the basis of
their Lyapunov spectrum, together with their Hausdorff
dimension. A similar scheme for discrete-time attractors can
be constructed, though one needs to make a distinction
between invertible and non-invertible maps (see [Klein and
Baier 1991, 8]).

Estimation of LCEs of Continuous Systems

Let us consider the continuos-time dynamical system (1),
together with an initial point zg lying in the basin of attrac-
tion of the limit set. It is easy to show that the tangent vector
u, defined in (2) evolves in time satisfying the so-called vari-
ational equation (see [Parker and Chua 1989, 305-306]):

®,(zg) = D, F(fi(z0)) - @z0)y  Polzo)=1,  (6)

where ®@,(z) is the derivative with respect to zo of f* at zo,
that is, ®4(zo) = Dy fY(zo). Equation 6 is a matrix-valued
time-varying linear differential equation whose coefficients
depend on the evolution of the original system (1). There-
fore, to calculate the trajectory, we must integrate the com-
bined system

T | F(z) z(to) _Jzo 7)
& | D F(z) - @f’ o) I’
As an example, let us suppose that the system (1) is the
Lorenz model,

m= FL{x_, y_, 23] = {16(y - x), x(46.92 - z) -y, x y - 42}
with the initial condition

n2i= x0 = {19, 20, 50};

We use Roman Maeder’s function RKStep to implement the
numerical integration of the first-order differential equation
(7) by the Runge-Kutta method [Maeder 1991, 171-175].

nigl= RKStep[f_, y_, yO_, dt_] :=
Module[{ k1, k2, k3, k4 },
ki = dt N[ f /. Thread[y -> y0] 1;
k2 = dt N[ f /. Thread[y -> y0 + k1/2] 1;
k3 = dt N[ f /. Thread[y -> y0 + k2/2] 1;
k4 = dt N[ f /. Thread[y -> y0 + k3] 1;
yo + (ki +2k2+2k3 +k4)/6 ]
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Topological Dynamics of LCE  Hausdorff
dimension the attractor spectrum dimension
1 Fixed point - 0
2 Periodic motion 0- 1
3 Torus T? 00- 2

Chaos C! +0- 2<D<3
4 Hypertorus T3 000- 3
Chaos on T3 +00- 3<D<4
Hyperchaos C2 ++0- 3<D<4
N Fixed point — = 0
Periodic Motion 00— = 1
(N - 1)-torus 0_/_0/;’_; l
122 N-l
(N —2)-chaos +-++0--0—-= k+l<D<N
—_—— ————
k21 121 Nkl

TABLE 1. LCE spectrum of continuous-time attractors (from [Klein and Baier 1991]).

nal= IntVarEq[F_List, DPhi_List, x_List, Phi_List,
x0_List, Phi0_List, {ti_, dt_}] :=
Module[{n, f, y, y0, yt},
n = Length[x0];
f = Flatten[Join[F, DPhill;
y = Flatten[Join[x, Phill;
y0 = Flatten[Join[x0, Phi0l];
yt = Nest[ RKStep[f, y, #, N[dt]l&,
N[y0], Round[N[t1/dt]] 1;
{First[#], Rest[#]} @ Partition[yt, n] ]

We also define functions to compute the Jacobian matrix
of F and the Euclidean norm of a vector.

5= JacobianMatrix[funs_List, vars_List] :=
Outer[D, funs, vars]

mil=  Norm[x_] := Sqrt[x.x]

Choosing a step size of 0.02 and T =20, we compute the
3 X 3 matrix ®p(zg) = DZOfT(J;O):

7= T = 20;

Inigl= stepsize = 0.02;

ngl= n = Length[x0];

miok= x = Array[a, nl;

ni1}= Phi = Array[b, {n, n}l;

I12l= DPhi = Phi.Transpose[JacobianMatrix[F[x], x]1;
in13k= Phi0 = IdentityMatrix[n];

n(14l= {xT, PhiT} =
IntVarEq[F[x], DPhi, x, Phi, x0, Phi0, {T, stepsize}];

(5= xT
ouf1sl= {17.7334, 15.016, 53.42}



in16l= PhiT // MatrixForm

Out[16]//MatrixForm=

1

1 12 12
3.16998 10 -4.95482 10 5.81422 10

u 12 12
5.39883 10 -8.43862 10 9.90228 10

1 12 12
2.64416 10 -4.13294 10 4.84979 10

In the previous section, we mentioned that A(zg, ug) = A4
for almost all initial conditions zy and for almost all tangent

vectors ug. Therefore, we can easily obtain an estimate of
the largest LCE by directly applying the definition (3):

I17k= u = Table[Random[], {n}];

if18k= Log[Norm[PhiT.u]1/T
out18}= 1.46574

The calculation of the entire LCE spectrum is more prob-
lematic. Oseledec [1968] shows that one can obtain the
entire spectrum by computing the eigenvalues of the matrix
D7 (z9) @r(zo), where @7 (z) is the adjoint matrix of @ (z),
and using the fact that they behave like €271, ..., 27",
Unfortunately, for large T, ®(z) is an ill-conditioned matrix,
because its columns tend to line up with the eigenvector asso-
ciated to the largest eigenvalue. Consequently, the small rel-
ative errors in the largest eigenvalue might contaminate the
smaller ones, giving unreliable estimates.

To circumvent these problems, we adopt the algorithm
discussed in [Benettin et al. 1980], which relies on the calcu-
lation of the order-p LCEs defined in equation 4 and the
repeated application of the Gram-Schmidt orthonormaliza-
tion procedure.

Given a set {uy, ..., u,} of p linearly independent vectors in
R", the Gram-Schmidt procedure generates an orthonormal
set {v1, ..., v,} of vectors which spans the same subspace
spanned by {us, ...,u,}. The vectors v; are given by

wi = u, v = wi/|wi

wy = wp— (unvvr, vz = wy/fwzfl, ... (8)
p—1

Wp = “p‘Z(“ani>Uia vp = wp/|lwpl,
=1

where ., -) is the scalar product of vectors. It is easy to show
that the volume of the parallelepiped spanned by {u, ..., Up}
1s

Vol {uy,...,u,} = ||w1” ”wp“.

Following the algorithm of [Benettin et al. 1980], we start
by choosing an initial condition z, and an n x n matrix
Up=[up, ... , w0 Using the Gram-Schmidt procedure, we
calculate the corresponding matrix of orthonormal vectors
Vo= [1)10 , ..., v] and integrate the variational equation (7)
from {zg, Vy} for a short interval T, to obtain z; = f%(z,) and

Uy = [ugy ooy ut] = Dy f1(Ug) = @rlzg) - [u), ..., u .

Again, we calculate the orthonormalized version of U; and
integrate the equation from {z, V1} for T seconds to obtain
z; and U,. We repeat this integration-orthonormalization
procedure K times.

During the k-th step, the p-dimensional volume Vol?
defined in (4) increases by a factor of I wf -l w;f I , where
wf, ..., w: } is the set of orthogonal vectors calculated from
Uy using (8). The definition (4) then implies

k
.1 i i
A(z0,Uo) = lim = % "In(lluwi -~ ).

i=1

Subtracting A?™! from A? and using (5), we obtain the p-th
LCE of order 1:

k
.1 i
Ap = len;o T .';'_1 In {jwp|].

This relation suggests an easy way to calculate the Lyapunov
spectrum. For a suitable value of T, continue to calculate
the quantities

K
1 i
77 2o llwill ~ A,

i=1

1 &
R—T;lnﬂwlﬂzkl, el

until they show convergence (for example, using the rela-
tive/absolute convergence test proposed in [Parker and Chua
1989, 302]) or until a maximum (sufficiently large) iteration
count is reached.

This procedure can be easily implemented with Mathe-
matica. The function GramSchmidt is defined in the package
LinearAlgebra®Orthogonalization".

In1g}= << LinearAlgebra®Orthogonalization®
n20}= T = 0.1;

In21}=" PhiT = Phi0;

in221= K = 800;
n23= s = {};
Ini241= Do[

{xT, PhiT} = IntVarEq[F[x], DPhi, x,
Phi, xT, PhiT, {T, stepsize}];
W = GramSchmidt[PhiT, Normalized -> False];
norms = Map[Norm, W];
s = Append[s, norms];
PhiT = W/norms,
K} 1;

iniz5k= lces = Rest[FoldList[Plus, 0, Log[s]11/(T RangelKl);

The three LCEs are

in26= Last[lces]
out26l= {1.48245, -0.0001195, -22.4654}
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To show the convergence of the LCEs, we use the Conver-
gencePlot command defined in the package LCE.m:

In271:= << LCE.m

Inj28l= ConvergencePlot[1ces]

o

0 200 400 600 800

Steps
FIGURE 2. Convergence plot of the Lyapunov spectrum for the Lorenz model.

We can obtain the same results using the LCEsC command:

n2gl= LCEsC[F, {19, 20, 50}, 0.1, 800, 20, 0.02]
outi29= {{1.48245, -0.0001195, -22.4654}, 2.06598}

This function returns the LCE spectrum and the Lyapunov
dimension of the attractor. The convergence plot of the LCEs
can be displayed by setting the option LCEsPlot to True.

An interesting example of a hyperchaotic continuous-time
attractor (“Rossler hyperchaos”) with two positive LCEs is
given by

n30)= rossler[{x_, y_, z_, w.}] :=
{-y-2,x+025y+w,3+x2z 0.05v-0.52}

(See [Rossler 1991].) The LCE spectrum is

In31:= lcesrossler =
LCEsC[rossler, {-10, -14, 0.3, 29}, 0.1, 2000, 1, 0.02]

ou31= {{0.142433, 0.005138, -0.00407495, -24.0831}, 3.00596}

A 3D projection of the four-dimensional attractor of this
dynamical system can be obtained with the PhaseSpaceC
command.

In32}= PhaseSpaceC[rossler,
{-10, -14, 0.3, 29}, 100, 20, 0.02, {1,2,3}]
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FIGURE 3. A 3D projection of the four-dimensional Rossler hyper-chaotic attractor.

The last argument {1,2,3} in the PhaseSpaceC command speci-
fies that the first three variables of the model (x, y, and z) are
to be plotted on the z, y, z axes, respectively.

Finally, we can also make use of the algorithm in [Benettin
et al. 1980] for estimating the LCEs of a nonautonomous
system, for example the Duffing model:

na33y= duffingl{x_, y_, t_}] :={y, 0.1 y - x™3 + 10 Cos[t], 1}

In[34]:= LCEsC[duffing, {0.5, 0.7, 0.2}, 0.05, 1000, 10, 0.02,
LCEsPlot -> True]

ou3a= {{0.0791481, 0., -0.159148}, 2.49732}

0.4

" MWWM
oy

)
2
-0.4
-0.6
0 200 400 600 800 1000

Steps

FIGURE 4. Convergence plot of the Lyapunov spectrum for the Duffing model.

In this case, there is a spurious Lyapunov exponent which
converges to zero. It corresponds to the additional trivial
evolution equation ¢ = 1.



LCEs of Discrete Systems

The discrete-time case is much simpler because, by the chain
rule,

Dyf'(wo) = J(fH(zo)) -+ J(Flzo)) * T(zo),

where J(zq) = D, f(z) [x=10' To avoid the above-mentioned
numerical problems in the calculation of D,f%(z), and to
show a different approach to the numerical calculation of the
whole LCE spectrum, here we prefer to follow the simpler
algorithm of [Eckmann and Ruelle 1985]. We start by using
the classical QR decomposition to write J(z) as J(z) = Q1 R4,
where @ is an orthogonal matrix and R is upper triangular.
Then, for k=2, 3,..., t, we define

¢ =J(fN2) Qpa (9)

and decompose J;" = Q,Ry. Clearly, D,f'(z) = Q,R; --- Ry.
It is possible to show that the diagonal elements o\ of the
upper-triangular matrix product Y) = R, .- R, satisfy

.1
tl-inolo 3 In vff) = Aj.

Let us take, for example, the four-dimensional discrete-
time dynamical system

msk= GL{x_, y_, z_, w.}] :={1.856 - 22 -0.05 v, x, y, 2}

We can estimate the Lyapunov spectrum in the following
way. First, define the starting condition and the system
dimension:

masi= x0 = {0.1, 0, 0, 0};

n@7L= n = Length[x0];

Then, compute the QR decomposition of the Jacobian J(z),
after a 100-step transient:

in38}= x = Array[a, nl;
nael= J[y_] := JacobianMatrix[G[x], x] /. Thread[x -> y]
ni40l= xt = Nest[G, N[x0], 100];

n#11= {q, r} = QRDecomposition[J[xt]];

Finally, repeat K times the QR decomposition procedure (9):

n421= K = 1000;
n43)= s={};
in44]= Do[

xt = G[xt];

{q, r} = QRDecomposition[J[xt].Transpose[q]];
s = Append[s, Table[r[[i,ill, {i, n}]],
{K}1;

ini4sl= lces = Rest[FoldList[Plus, 0, Re[Log[s]1111/Range[K];

The LCEs are

Ini46}= Last[lces]
outiael= {0.16985, 0.160085, 0.156375, -3.48204}

ini47=  ConvergencePlot[1lces]

LCEs

-2

S

0 200 400 600 800 1000
Steps

FIGURE 5. Convergence plot of the Lyapunov spectrum for the hyper? chaotic map.

Again, we can obtain the same results using the LCEsD com-
mand defined in LCE.m:

Inj48)= lceshyper2 = LCEsD[G, {0.1, 0, 0, 0}, 1000, 100]
outiasl= {{0.16985, 0.160085, 0.156375, -3.48204}, 3.13966}

The presence of three positive LCEs points out that the orbits
of the system lie on a so-called “hyper?-chaotic attractor”
[Klein and Baier 1991].

Lyapunov Dimension

Kaplan and Yorke [1979, 228] have suggested an interesting
conjecture that relates the fractal dimension of the attractor
to the Lyapunov spectrum:

D . Zle Ai
L= i1

where the LCEs are ordered in the usual way as A; > ... 2 A,
and where j is the largest integer such that Ay + --- + ;> 0.
In particular, Kaplan and Yorke suggest that D; is a lower
bound of the capacity dimension, that is, D; < D¢. For more
details, see [Farmer et al. 1983].

Inl4g}= LyapunovDimension[x_] :=
Module[{1, suml, j},
1 = Sort[x, Greater];
suml = Rest[FoldList[Plus, 0, 1]1;
J = Last[Position[suml, _7Positivell;
First[j - suml[[j11/10[j+111] ]

For the Rossler hyperchaos example, the Lyapunov dimen-
sion is given by

injs0k=  LyapunovDimension[First[lcesrossler]]
0uts0l= 3.00596
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For the hyper?-chaotic attractor, Dy is

i51]=  LyapunovDimension[First[1lceshyper2]]
outis1= 3.13966
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